Endogenous and network properties of Lymnaea feeding central pattern generator interneurons.
نویسندگان
چکیده
Understanding central pattern generator (CPG) circuits requires a detailed knowledge of the intrinsic cellular properties of the constituent neurons. These properties are poorly understood in most CPGs because of the complexity resulting from interactions with other neurons of the circuit. This is also the case in the feeding network of the snail, Lymnaea, one of the best-characterized CPG networks. We addressed this problem by isolating the interneurons comprising the feeding CPG in cell culture, which enabled us to study their basic intrinsic electrical and pharmacological cellular properties without interference from other network components. These results were then related to the activity patterns of the neurons in the intact feeding network. The most striking finding was the intrinsic generation of plateau potentials by medial N1 (N1M) interneurons. This property is probably critical for rhythm generation in the whole feeding circuit because the N1M interneurons are known to play a pivotal role in the initiation of feeding cycles in response to food. Plateau potential generation in another cell type, the ventral N2 (N2v), appeared to be conditional on the presence of acetylcholine. Examination of the other isolated feeding CPG interneurons [lateral N1 (N1L), dorsal N2 (N2d), phasic N3 (N3p)] and the modulatory slow oscillator (SO) revealed no significant intrinsic properties in relation to pattern generation. Instead, their firing patterns in the circuit appear to be determined largely by cholinergic and glutamatergic synaptic inputs from other CPG interneurons, which were mimicked in culture by application of these transmitters. This is an example of a CPG system where the initiation of each cycle appears to be determined by the intrinsic properties of a key interneuron, N1M, but most other features of the rhythm are probably determined by network interactions.
منابع مشابه
Glutamatergic N2v cells are central pattern generator interneurons of the lymnaea feeding system: new model for rhythm generation.
We aimed to show that the paired N2v (N2 ventral) plateauing cells of the buccal ganglia are important central pattern generator (CPG) interneurons of the Lymnaea feeding system. N2v plateauing is phase-locked to the rest of the CPG network in a slow oscillator (SO)-driven fictive feeding rhythm. The phase of the rhythm is reset by artificially evoked N2v bursts, a characteristic of CPG neurons...
متن کاملPattern-generating role for motoneurons in a rhythmically active neuronal network.
The role of motoneurons in central motor pattern generation was investigated in the feeding system of the pond snail Lymnaea stagnalis, an important invertebrate model of behavioral rhythm generation. The neuronal network responsible for the three-phase feeding motor program (fictive feeding) has been characterized extensively and divided into populations of central pattern generator (CPG) inte...
متن کاملIn vitro appetitive classical conditioning of the feeding response in the pond snail Lymnaea stagnalis.
In vitro appetitive classical conditioning of the feeding response in the pond snail Lymnaea stagnalis. J. Neurophysiol. 78: 2351-2362, 1997. An in vitro preparation was developed that allowed electrophysiological analysis of appetitive conditioning of feeding in the model molluscan system, Lymnaea. The network generating the feeding motor program (fictive feeding) is well characterized at the ...
متن کاملComputational modelling of a Central Pattern Generator
Central Pattern Generators (CPGs) are small, rhythmically active networks, which control simple repetitive behaviours, in both vertebrates and invertebrates. Research on CPGs aims at understanding how the periodic pattern is generated and modulated, by investigating the intrinsic and synaptic properties of the component neurons. In this study, we present a mathematical, biophysically-realistic ...
متن کاملPolycyclic neuromodulation of the feeding rhythm of the pond snail Lymnaea stagnalis by the intrinsic octopaminergic interneuron, OC.
We have examined the role of the octopamine-containing buccal OC interneuron in the fictive feeding rhythm generated by depolarizing a modulatory interneuron, SO, in the isolated central nervous system (CNS) of Lymnaea stagnalis. Before stimulating the SO, the initial fictive feeding rate was 2.0+/-0.37 bites/min (mean+/-S.E.). When the SO was stimulated, the fictive feeding rate more than doub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 4 شماره
صفحات -
تاریخ انتشار 2002